A Nelson-Oppen based Proof System using Theory
نویسندگان
چکیده
SMT solvers are nowadays pervasive in verification tools. When the verification is about a critical system, the result of the SMT solver is also critical and cannot be trusted. The SMT-LIB 2.0 is a standard interface for SMT solvers but does not specify the output of the get-proof command. We present a proof system that is geared towards SMT solvers and follows their conceptually modular architecture. Our proof system makes a clear distinction between propositional and theory reasoning. Moreover, individual theories provide specific proof systems that are combined using the Nelson-Oppen proof scheme. We propose specific proof systems for linear real arithmetic (LRA) and uninterpreted functions (EUF) and discuss proof generation and proof checking. We have evaluated the cost of generating proofs in our proof system. Our experiments on benchmarks taken from the SMT-LIB library show that the simple mechanisms used in our approach suffice for a large majority of the selected benchmarks.
منابع مشابه
A Nelson-Oppen based Proof System using Theory Specific Proof Systems∗
SMT solvers are nowadays pervasive in verification tools. When the verification is about a critical system, the result of the SMT solver is also critical and cannot be trusted. The SMT-LIB 2.0 is a standard interface for SMT solvers but does not specify the output of the get-proof command. We present a proof system that is geared towards SMT solvers and follows their conceptually modular archit...
متن کاملCooperative Integration of an Interactive Proof Assistant and an Automated Prover
We propose a mechanism for semi-automated proving of theorems, using a tactic for the Coq proof assistant that consults a proof-generating Nelson-Oppen-style automated prover. Instead of simply proving or failing to prove a goal, our tactic decides on relevant case splits using theory-specific axioms, proves some of the resulting cases, and returns the remainder to the Coq user as subgoals. The...
متن کاملA Generalization of Shostak ' s Method and it ' sRelationship to the Nelson - Oppen
Consider the problem of determining whether a quantiier-free formula is satissable in some rst-order theory T with equality. Shostak noticed that under certain conditions, the answer to this question can be determined in a simple and eecient way. Unfortunately, explanations of his algorithm have been complicated and incomplete. One of the reasons for this complication is the inclusion of uninte...
متن کاملThe 2006 Federated Logic Conference
We propose a mechanism for semi-automated proving of theorems, using a tactic for the Coq proof assistant that consults a proof-generating Nelson-Oppen-style automated prover. Instead of simply proving or failing to prove a goal, our tactic decides on relevant case splits using theory-specific axioms, proves some of the resulting cases, and returns the remainder to the Coq user as subgoals. The...
متن کاملStrategies for Combining Decision Procedures
Implementing efficient algorithms for combining decision procedures has been a challenge and their correctness precarious. In this paper we describe an inference system that has the classical Nelson-Oppen procedure at its core and includes several optimizations: variable abstraction with sharing, canonization of terms at the theory level, and Shostak’s streamlined generation of new equalities f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011